发布于 

tensorflow笔记(3)

加速神经网络训练(Speed Up Training)

越复杂的神经网络 , 越多的数据 , 我们需要在训练神经网络的过程上花费的时间也就越多. 原因很简单, 就是因为计算量太大了. 可是往往有时候为了解决复杂的问题, 复杂的结构和大数据又是不能避免的, 所以我们需要寻找一些方法, 让神经网络聪明起来, 快起来.

####Stochastic Gradient Descent (SGD)

最基础的方法就是 SGD 啦, 如果用普通的训练方法, 就需要重复不断的把整套数据放入神经网络 NN训练, 这样消耗的计算资源会很大.

我们换一种思路, 如果把这些数据拆分成小批小批的, 然后再分批不断放入 NN 中计算, 这就是我们常说的 SGD 的正确打开方式了. 每次使用批数据, 虽然不能反映整体数据的情况, 不过却很大程度上加速了 NN 的训练过程, 而且也不会丢失太多准确率.如果运用上了 SGD, 你还是嫌训练速度慢, 那怎么办?

####Momentum 更新方法

大多数其他途径是在更新神经网络参数那一步上动动手脚. 传统的参数 W 的更新是把原始的 W 累加上一个负的学习率(learning rate) 乘以校正值 (dx). 这种方法可能会让学习过程曲折无比, 看起来像 喝醉的人回家时, 摇摇晃晃走了很多弯路.

所以我们把这个人从平地上放到了一个斜坡上, 只要他往下坡的方向走一点点, 由于向下的惯性, 他不自觉地就一直往下走, 走的弯路也变少了.

$ W += -(Learning Rate) * dx $

更改为

$ m = b1 * m - (Learning Rate) * dx$
$W += m$
这就是 Momentum 参数更新. 另外一种加速方法叫AdaGrad.

AdaGrad 更新方法

这种方法是在学习率上面动手脚, 使得每一个参数更新都会有自己与众不同的学习率, 他的作用和 momentum 类似, 不过不是给喝醉酒的人安排另一个下坡, 而是给他一双不好走路的鞋子, 使得他一摇晃着走路就脚疼, 鞋子成为了走弯路的阻力, 逼着他往前直着走. 他的数学形式是这样的.

$ W += -(Learning Rate) * dx $

更改为

$ v += (dx)^2 $
$W += \frac{-(Learning Rate) * dx}{\sqrt{v}} $

接下来又有什么方法呢? 如果把下坡和不好走路的鞋子合并起来, 是不是更好呢? 没错, 这样我们就有了 RMSProp 更新方法.

RMSProp 更新方法

有了 momentum 的惯性原则 , 加上 adagrad 的对错误方向的阻力, 我们就能合并成这样. 让 RMSProp同时具备他们两种方法的优势. 不过细心的同学们肯定看出来了, 似乎在 RMSProp 中少了些什么. 原来是我们还没把 Momentum合并完全, RMSProp 还缺少了 momentum 中的 这一部分. 所以, 我们在 Adam 方法中补上了这种想法.

$ W += - (Learning Rate * dx)$

更改为:

$v = b1 * v + (1-b1) * dx^2$
$W += \frac{-(Learning Rate) * dx}{\sqrt{v}} $

####Adam更新方法
计算m 时有 momentum 下坡的属性, 计算 v 时有 adagrad 阻力的属性, 然后再更新参数时 把 m 和 V 都考虑进去. 实验证明, 大多数时候, 使用 adam 都能又快又好的达到目标, 迅速收敛. 所以说, 在加速神经网络训练的时候, 一个下坡, 一双破鞋子, 功不可没.

$ W += - (Learning Rate * dx)$

更改为:

$m = b1 * m + (1-b1) * dx \rightarrow Momentum$
$v = b2 * v + ( 1-b2) * dx^2 \rightarrow AdaGrad$
$W += \frac{-(Learning Rate) * dx}{\sqrt{v}} $


本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议,转载请注明出处。

本站由 @shyiuanchen 创建,使用 Stellar 作为主题。